Skip to main content
Log in

Numerical Simulation of the Formation and Motion of Turbulent Vortex Clouds (Puffs)

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of numerical simulation of the formation and motion of turbulent vortex clouds (puffs) resulting from the blowing of pulsed jets with various initial velocities and durations are given. A model of axisymmetric turbulent flow described by the time-dependent Reynolds equations is adopted. It is shown that, regardless of the initial conditions, a puff which has the shape similar to a sphere develops after the same dimensionless time interval from the instant of jet outflow. In the rest of the space the vortex-induced flow is close to a potential flow. It is found that in the vortices the velocity profiles in the axial and transverse directions are close to self-similar profiles and similar each other for various conditions of outflow of pulsed jets. The time dependences of the geometric and kinematic characteristics of puffs, namely, the location of the cloud center (points with the maximum velocity) and the radius of a sphere equivalent in volume to the puff, as well as the maximum and mean velocities, are given and analyzed. For the jet outflow conditions considered, the characteristics of puffs turn out to be similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Nazaroff, W.W., Indoor aerosol science aspects of SARS-CoV-2 transmission, Indoor Air, 2022, vol. 32, no. 1, pp. 1–13. https://doi.org/10.1111/ina.12970

    Article  Google Scholar 

  2. Bu, Y., Ooka, R., Kikumoto, H., and Oh, W., Recent research on expiratory particles in respiratory viral infection and control strategies: A review, Sustainable Cities and Society, 2021, vol. 73, pp. 1–16. https://doi.org/10.1016/j.scs.2021.103106

    Article  Google Scholar 

  3. Gupta, J.K., Lin, C.-H., and Chen, Q., Flow dynamics and characterization of a cough, Indoor Air, 2009, vol. 19, no. 6, pp. 517–525. https://doi.org/10.1111/j.1600-0668.2009.00619.x

    Article  Google Scholar 

  4. Bourouiba, L., The fluid dynamics of disease transmission, Ann. Rev. Fluid Mech., 2021, vol. 53, pp. 473–508. https://doi.org/10.1146/annurev-fluid-060220-113712

    Article  ADS  MATH  Google Scholar 

  5. Mazzino, A. and Rosti, M.E., Unraveling the secrets of turbulence in a fluid puff, Phys. Rev. Lett., 2021, vol. 127, no. 9, pp. 1–6. https://doi.org/10.1103/PhysRevLett.127.094501

    Article  MathSciNet  Google Scholar 

  6. Fabregat, A., Gisbert, F., Vernet, A., Dutta, S., Mittal, K., and Pallarès, J., Direct numerical simulation of the turbulent flow generated during a violent expiratory event, Phys. Fluids, 2021, vol. 33, pp. 1–12. https://doi.org/10.1063/5.0042086

    Article  Google Scholar 

  7. Fabregat, A., Gisbert, F., Vernet, A., Ferré, J.A., Mittal, K., Dutta, S., and Pallarès, J., Direct numerical simulation of turbulent dispersion of evaporative aerosol clouds produced by an intense expiratory event, Phys. Fluids, 2021, vol. 33, pp. 1–13. https://doi.org/10.1063/5.0045416

    Article  Google Scholar 

  8. Ghaem-Maghami, E. and Johari, H., Concentration field measurements within isolated turbulent puffs, ASME. J. Fluids Eng., 2007, vol. 129, pp. 194–199. https://doi.org/10.1115/1.2409348

    Article  Google Scholar 

  9. Akhmetov, D.G., Vortex Rings, Berlin: Springer, 2009; Novosibirsk: GEO, 2007.

  10. Nikulin, V.V., Mass exchange between the atmosphere of turbulent vortex ring and the surrounding medium, Fluid Dyn., 2021, vol. 56, no. 4, pp. 473–480. https://doi.org/10.1134/S0015462821040108

    Article  ADS  Google Scholar 

  11. Andriani, R., Coghe, A., and Cossali, G.E., Near-field entrainment in unsteady gas jets and diesel sprays: A comparative study, in: Symposium (International) on Combustion, 1996, vol. 26, no. 2, pp. 2549–2556. https://doi.org/10.1016/s0082-0784(96)80087-7.

  12. Kovasznay, L.S.G., Fujita, H., and Lee, R.L., Unsteady turbulent puffs, Adv. Geophys., 1975, vol. 18, Part B, pp. 253–263. https://doi.org/10.1016/S0065-2687(08)60584-1

    Book  Google Scholar 

  13. Richards, J.M., Puff motions in unstratified surroundings, J. Fluid Mech., 1965, vol. 21, no. 1, pp. 97–106. https://doi.org/10.1017/S002211206500006X

    Article  ADS  Google Scholar 

  14. Sangras, R., Kwon, O.C., and Faeth, G.M., Self-preserving properties of unsteady round nonbuoyant turbulent starting jets and puffs in still fluids, ASME. J. Heat Transfer, 2002, vol. 124, no. 3, pp. 460–469. https://doi.org/10.1115/1.1421047

    Article  Google Scholar 

  15. Ghaem-Maghami, E. and Johari, H., Velocity field of isolated turbulent puffs, Phys. Fluids, 2010, vol. 22, pp. 1–13. https://doi.org/10.1063/1.3504378

    Article  Google Scholar 

  16. Zasimova M.A., Ivanov, N.G., and Ris, V.V., Non-stationary diffusion of viral particles in a pulsed jet formed during coughing, in: XVI Minsk International Forum on Heat and Mass Transfer. Abstracts and Messages. Minsk: ITMO im. A.V. Lykov, 2022, pp. 251–255.

  17. Zasimova M., Ris V., and Ivanov N., CFD modelling of a pulsed jet formed during an idealized isolated cough, in: E3S Web of Conferences, 2022, v. 356, pp. 1–4. https://doi.org/10.1051/e3sconf/202235605024

  18. Zasimova M.A., Ivanov, N.G., and Ris, V.V., URANS and LES simulation of the initial stage of propagation of a droplet-containing air jet characteristic of acute respiratory phenomena, in: Materials of the 8th RNKT, Moscow: Izd. MEI, 2022, vol. 1, pp. 435–438.

    Google Scholar 

  19. Pallarès, J., Fabregat, A., Lavrinenko, A., et al., Numerical simulations of the flow and aerosol dispersion in a violent expiratory event: Outcomes of the “2022 International Computational Fluid Dynamics Challenge on violent expiratory events,” Phys. Fluids, 2023, vol. 35, pp. 1–22. https://doi.org/10.1063/5.0143795

    Article  Google Scholar 

  20. Yakhot,V. and Orszag, S.A., Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., 1986, vol. 1, pp. 3–51. https://doi.org/10.1007/BF01061452

    Article  MathSciNet  MATH  Google Scholar 

  21. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G., Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids, 1992, vol. 4, pp. 1510–1520. https://doi.org/10.1063/1.858424

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Batchelor, G.K., An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 2000.

    Book  Google Scholar 

  23. Glezer, A. and Coles, D., An experimental study of a turbulent vortex ring, J. Fluid Mech., 1990, vol. 211, pp. 243–283. https://doi.org/10.1017/S0022112090001562

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zasimova.

Ethics declarations

The authors wish to thank Prof. E.M. Smirnov for valuable advices and comments.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasimova, M.A., Ris, V.V. & Ivanov, N.G. Numerical Simulation of the Formation and Motion of Turbulent Vortex Clouds (Puffs). Fluid Dyn 58, 882–893 (2023). https://doi.org/10.1134/S0015462823601316

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823601316

Keywords:

Navigation